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We study properties of the monic polynomials [Qn]n # N orthogonal with respect
to the Sobolev inner product

( p, q)S=|
�

0

( p, p$) \1
+

+
*+ \ q

q$+ x:e&x dx,

where *&+2>0 and :>&1. This inner product can be expressed as

( p, q)S=|
�

0

p(x) q(x)((++1) x&:+) x:&1e&x dx+* |
�

0

p$q$x:e&x dx,

when :>0. In this way, the measure which appears in the first integral is not
positive on [0, �) for + # R" [&1, 0]. The aim of this paper is the study of analytic
properties of the polynomials Qn . First we give an explicit representation for Qn

using an algebraic relation between Sobolev and Laguerre polynomials together
with a recursive relation for k� n=(Qn , Qn)S . Then we consider analytic aspects. We
first establish the strong asymptotics of Qn on C"[0, �) when + # R and we also
obtain an asymptotic expression on the oscillatory region, that is, on (0, �). Then
we study the Plancherel�Rotach asymptotics for the Sobolev polynomials Qn(nx)
on C"[0, 4] when + # (&1, 0]. As a consequence of these results we obtain the
accumulation sets of zeros and of the scaled zeros of Qn . We also give a Mehler�
Heine type formula for the Sobolev polynomials which is valid on compact subsets
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of C when + # (&1, 0], and hence in this situation we obtain a more precise result
about the asymptotic behaviour of the small zeros of Qn . This result is illustrated
with three numerical examples. � 2001 Academic Press
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1. INTRODUCTION

The study of the asymptotic properties of the polynomials orthogonal
with respect to a Sobolev inner product

( p, q)S=|
R

pq d+0+|
R

p$q$ d+1 , (1)

where +0 and +1 are measures supported on sets with infinitely many points
in R and such that their absolutely continuous components do not vanish
(such orthogonal polynomials are called continuous Sobolev orthogonal
polynomials) has known an increasing development in the last few years.
Probably, one of the first papers in this direction was [5]. A survey on this
topic is given in the recent paper [6].

A continuous non-diagonal Sobolev inner product

( p, q)S=|
b

a
( p, p$, ..., p(k)) W(x) \

q
q$
b

q(k)+ dx, (2)

where W is a positive definite matrix function, integrable in some interval
[a, b]/R was analyzed by Scha� fke and Wolf in [12] taking into considera-
tion the analog of the classical orthogonal polynomials (Laguerre, Hermite
and Jacobi).

A particular situation of (2) is when k=1 and W(x)=( 1
+

+
*) w(x), where

w is a weight function satisfying a Pearson equation. The Jacobi case was
treated in [9] from the point of view of the analytic properties of the corre-
sponding sequences of orthogonal polynomials. Their asymptotic behavior
in C� "[&1, 1] as well as the distribution of their zeros were studied.

The present contribution deals with the study of asymptotic properties of
polynomials orthogonal with respect to the inner product

( p, q)S=|
�

0
( p, p$) \ 1

+
+
*+ \

q
q$+ x:e&x dx, (3)
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with :>&1. We assume *&+2>0. This ensures that ( } , } )S is a positive
definite inner product and the existence of a unique sequence [Qn] of
monic polynomials orthogonal with respect to (3).

Notice that for :>0, integration by parts yields

( p, q)S=|
�

0
p(x) q(x)[(++1) x&:+] x:&1e&x dx

+* |
�

0
p$(x) q$(x) x:e&x dx. (4)

If we write s(x)=(++1) x&:+, then

( p, q)S=|
�

0
p(x) q(x) s(x) x:&1e&x dx+* |

�

0
p$(x) q$(x) x:e&x dx,

and s(x) is a polynomial of degree at most one. Actually, if +{&1, the
degree of s(x) is exactly one and if +=&1 we have the trivial case as it will
be shown later.

Thus, if + # R"[&1, 0] the inner product is an example of a Sobolev
inner product where the measure acting on the standard part changes sign
in its support. In some sense, the integral term involving derivatives
guarantees the positive definiteness of (4). If + # (&1, 0] the inner product
is an example of a Sobolev inner product associated with a coherent pair
of measures in the unbounded case (see [7] for the classification of
coherent pairs). Moreover we also recover some examples of coherent pairs
as particular cases of our inner product.

Denote by L (:)
n (x) the nth monic Laguerre polynomial. We know that

L(:)
n (x) are polynomials orthogonal with respect to

(p, q) =|
�

0
p(x) q(x) x:e&x dx, :>&1.

For : # R we know the explicit representation of such polynomials (see
[11, p. 201] or [13, p. 102]):

L (:)
n (x)=(&1)n n ! :

n

k=0 \
n+:
n&k+

(&x)k

k!
. (5)

The following theorem summarizes some of the properties of Laguerre
polynomials which will be used later (see [11, 13]):

56 MARCELLA� N AND MORENO-BALCA� ZAR



Theorem 1. (a) Let : # R. Then

L (:&1)
n+1 (x)=L (:)

n+1(x)+(n+1) L (:)
n (x),

(L (:&1)
n+1 (x))$=(n+1) L (:)

n (x).

(b) (Perron's formula) Let : # R. Then

(&1)n L (:)
n (x)

n !
=2&1?&1�2ex�2(&x)&:�2&1�4 n:�2&1�4e2(&nx) 1�2

(1+O(n&1�2)).

This relation holds for x in the complex plane cut along the positive real
semiaxis; both (&x)&:�2&1�4 and (&x)1�2 must be taken real and positive if
x<0. The bound of the remainder holds uniformly in every closed domain
which does not overlap the positive real semiaxis.

(c) Uniformly on compact subsets of C"[0, �),

lim
n � �

L (:)
n+1(x)

nL (:)
n (x)

=&1.

(d) Let :>&1. Then

k (:)
n :=(L:)

n , L (:)
n )=n! 1(n+:+1).

(e) Recurrence relation:

xL (:)
n (x)=L (:)

n+1(x)+(2n+:+1) L (:)
n (x)+n(n+:) L (:)

n&1(x),

n=0, 1, 2, ...

with L&1(x)=0 and L0(x)=1.

In what follows we suppose +{&1 because for +=&1 we have Qn(x)
=L (:&1)

n (x), which is straightforward from (4) using (a) of Theorem 1 (or
Lemma 1).

The main goal of this paper is to obtain analytic results for the Sobolev
polynomials (Qn) associated with the inner product (3) and to give a
simple way to calculate them. First, we deduce a recurrence relation for k� n ,
using an important algebraic relation between Sobolev polynomials and
Laguerre polynomials. Both things allow us to obtain an explicit represen-
tation of Qn . Second, we obtain the asymptotic behavior of k� n :=(Qn , Qn)S .
These results are necessary to face the analytic properties. We give different
types of asymptotic results for Qn . The relative asymptotics Qn(x)�L (:&1)

n (x)
in C"[0, �) as well as the strong asymptotics of [Qn] in C"[0, �) are
obtained. As a fairly direct consequence, the distribution of zeros of Qn is

57ASYMPTOTICS OF SOBOLEV POLYNOMIALS



given. When +=0 (the diagonal case) the strong asymptotics of Qn on
C"[0, �) was obtained in [4] using tools and techniques which are
specific for this particular case. We also obtain an asymptotic result for Qn

on (0, �) for + # R.
Next, we study the Plancherel�Rotach asymptotics of the Sobolev poly-

nomials. Scaling the variable, we can deduce the relative asymptotics for
the scaled Sobolev polynomials with respect to the scaled Laguerre polyno-
mials when + # (&1, 0]. Taking this into account as well as the Plancherel�
Rotach asymptotics for the sequence [Ln(nx)], we get the analogous result
for the scaled Sobolev polynomials [Qn(nx)]. Notice that in a recent paper
[10] the study of the n th root asymptotics for the scaled Sobolev�Laguerre
polynomials on the oscillatory region is presented.

Finally, we give a Mehler�Heine type formula for Qn when + # (&1, 0].
From this result we obtain a limit relation for the zeros of Qn in terms of
the zeros of the Bessel function J:&1(x) defined as (see, e.g., [13, p. 15]):

Jk(x)= :
�

j=0

(&1) j (x�2)2 j+k

j ! 1( j+k+1)
.

Note that the zeros of z&kJk(x) are real if k>&1 (see [13, p. 193]).

2. MAIN RESULTS

First, we give a recurrence relation for k� n=(Qn , Qn)S ,

Proposition 1. For n�1,

k� n=k (:)
n +(1+*+2+) n2k (:)

n&1&(1++)2 n2 (k (:)
n&1)2

k� n&1

. (6)

Using Proposition 1 and the well-known Poincare� Theorem we get

Proposition 2. One has

l := lim
n � �

k (:)
n

k� n

=
*+2(1++)&- *2+4*(1++)

2(1++)2 <1.

The proposition above allows us to deduce the relative asymptotics
Qn �L (:&1)

n as n � �
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Theorem 2. Uniformly on compact subsets of C"[0, �),

lim
n � �

Qn(x)
L (:&1)

n (x)
=

2(1++)

- *2+4*(1++)&*
.

Corollary 1 (Strong asymptotics of Qn). Uniformly on compact
subsets of C"[0, �),

(&1)n Qn(x)

n! n:�2&3�4e2(&nx) 1�2

=
(1++)

(- *2+4*(1++)&*) - ?
ex�2(&x)&:�2+1�4 (1+O(n&1�2)).

It is known (see [1]) that when + # (&1, 0] the zeros of Qn are all real.
Moreover, if :�0, they are all positive and, if : # (&1, 0), there is at
most one negative zero. Next, we give a first result about zeros of Qn(x)
with + # R.

Corollary 2. The zeros of the non-diagonal Laguerre�Sobolev orthogonal
polynomials Qn accumulate on [0, �), when :>&1.

Furthermore, we can also obtain an asymptotic result on (0, �).

Theorem 3. Uniformly on compact subsets of (0, �),

(&1)n Qn(x)
n ! n:�2&1�2 =ex�2x&:�2+1�2J:&1(2 - nx)+O(n&1�4),

where J:&1(x) is the Bessel function defined as

J:&1(x)= :
�

j=0

(&1) j (x�2)2j+:&1

j ! 1( j+:)
.

We have bounds for k� n ,

Proposition 3. For n�1,

(*&+2) n2k (:)
n&1+k (:)

n �k� n�k (:)
n +(1+*+2+) n2k (:)

n&1 , n�1.
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From the above Proposition we deduce a uniform bound for the ratio
k(:)

n �k� n , that is,

k (:)
n

k� n

�C<1, n�1, (7)

where C can be taken as

C=
1

1+
*&+2

max[1, 1+:]

. (8)

Now, we look for an asymptotic result of Plancherel�Rotach type for the
scaled polynomials Qn(nx) in the exterior region. An asymptotic result of
Plancherel�Rotach type in the oscillatory region is obtained in [10] when
+ # (&1, 0] (Laguerre coherent pairs of type I, see [7]).

Theorem 4. Uniformly on compact subsets of C"[0, 4],

(a) Letting + # (&1, 0] and :>0,

lim
n � �

Qn(nx)
L (:&1)

n (nx)
=

. \x&2
2 +

. \x&2
2 ++l(1++)

. (9)

(b) Letting + # (&1, 0] and :>&1,

lim
n � �

Qn(nx)
L (:)

n (nx)
=

. \x&2
2 ++1

. \x&2
2 ++l(1++)

, (10)

where .(x)=x+- x2&1 with - x2&1>0 if x>1, and l is given in
Proposition 2.

From this result and using the scaled asymptotics for the Laguerre
polynomials, we get

Corollary 3. Denote by xn, i , i=1, ..., n the zeros in increasing order of
Qn and + # (&1, 0], then the contracted zeros of Qn , (xn, i �n) i=1, ..., n,
accumulate on [0, 4], and moreover, the asymptotic distribution of the
contracted zeros has density (2?)&1

- 4&x�- x.
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Corollary 4 (Plancherel�Rotach asymptotics). If + # (&1, 0], then
uniformly on compact subsets of C"[0, 4],

lim
n � �

2n
- 2?n Qn(nx)

n ! (x&2+- x2&4x)n exp \ 2nx

x+- x2&4x+

=
. \x&2

2 ++1

. \x&2
2 ++l(1++)

2&:&1�2x&:(x&2+- x2&4x)1�2

_(x+- x2&4x): (- x2&4x)&1�2,

taking into account that the square roots in the above formula are negative
if x is negative.

Next, we deduce a Mehler�Heine type formula for Qn . We consider the
following modification of the Bessel function

x&(:&1)�2J:&1(2 - x)= :
�

j=0

(&1) j x j

j! 1( j+:)
.

Then we can establish the asymptotics near 0, complementing Theorem 3:

Theorem 5. Let + # (&1, 0]. Then, for :>&1,

lim
n � �

(&1)n Qn(x�n)
n ! n:&1 =

2(1++)

- *2+4*(1++)&*
x&(:&1)�2J:&1(2 - x) (11)

holds uniformly for x on compact subsets of C.

From this Theorem we can obtain additional information about of zeros
of Qn when + # (&1, 0]. By Corollary 2, we know that these zeros
accumulate in [0, �) when n � �. Now, by (11) the small zeros of Qn

satisfy the following asymptotic property:

Proposition 4. If + # (&1, 0], :>&1 and xn, i are the zeros of Qn ,
then

lim
n � �

nxn, i=
j2
:&1, i

4
,

where, if all the zeros of Qn are non-negative, j:&1, i is ith positive real zero
of Bessel function J:&1(x) and, if Qn has one negative zero, then j:&1, 1 is

61ASYMPTOTICS OF SOBOLEV POLYNOMIALS



any of the two complex zeros of J:&1(x) and, for i�2, j:&1, i is (i&1)th
positive real zero of J:&1(x).

Remark 1. When : # (&1, 0), Qn has at most one negative zero. In this
situation J:&1(x) has exactly two complex zeros on the imaginary axis,
thus the limit value j2

:&1, 1 �4 is negative.

We illustrate this result with three numerical examples. In these examples,
we compute nxn, i for i=1, ..., 5 and n=25, 50, 100, 200, 300 and compare
with the limit values j2

:&1, i �4.

Example 1. *=4.5, :=1 and +=&0.5.

1st Zero 2nd Zero 3rd Zero 4th Zero 5th Zero

n=25 1.423597691 7.506777687 18.475193396 34.373457650 55.263999713
n=50 1.434478208 7.559703167 18.585675024 34.525537630 55.395117910
n=100 1.440082185 7.588093425 18.650413696 34.632202794 55.537671207
n=200 1.442925484 7.602785665 18.685243739 34.693441211 55.628662289
n=300 1.443879401 7.607757879 18.697225161 34.715047218 55.661963418

j 2
:&1, i

4
1.445796491 7.617815586 18.721751699 34.760071107 55.733075905

Example 2. *=4.5, :=1 and +=0 (diagonal case).

1st Zero 2nd Zero 3rd Zero 4th Zero 5th Zero

n=25 1.428828896 7.534309400 18.542719079 34.498466787 55.463683324
n=50 1.437030000 7.573145181 18.618696247 34.586808979 55.493278627
n=100 1.441343336 7.594737989 18.666741939 34.662514573 55.586262953
n=200 1.443552511 7.606089388 18.693362868 34.708515216 55.652830333
n=300 1.444296644 7.609956291 18.702627983 34.725078312 55.678046603

j 2
:&1, i

4
1.445796491 7.617815586 18.721751699 34.760071107 55.733075905

Example 3. *=5, :=&0.9 and +=&0.25.

1st Zero 2nd Zero 3rd Zero 4th Zero 5th Zero

n=25 &0.331304673 0.615975720 7.317078637 18.994018805 35.800381920
n=50 &0.327321935 0.608512493 7.223516960 18.728907791 35.240186072
n=100 &0.325385645 0.604898564 7.179421436 18.609185233 35.000343889
n=200 &0.324430710 0.603119801 7.158014537 18.552368155 34.889893762
n=300 &0.324114318 0.602530977 7.150971819 18.533869676 34.854444681

j 2
:&1, i

4
&0.323484380 0.601359401 7.137023996 18.497524649 34.785568869
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Remark 2. Since we have uniform convergence in the asymptotic
results obtained for Qn , we also get asymptotic results for the derivatives
of Qn . In particular, taking derivatives in Theorem 5 we have for :>&1
and + # (&1, 0],

lim
n � �

(&1)n&1 Q$n(x�n)
n ! n: =

2(1++)

- *2+4*(1++)&*
x&:�2J:(2 - x),

uniformly on compact subsets of C. Thus, we have asymptotic information
about the critical points x~ n, i of Qn , that is,

lim
n � �

nx~ n, i=
j2
:, i

4
,

where j:, i has the same meaning as in Proposition 4. In the relevant paper
[2] one can find information about the asymptotic distribution of zeros
and critical points of Sobolev orthogonal polynomials in the bounded case.

3. PROOFS

We first obtain the following algebraic relation between Sobolev and
Laguerre polynomials:

Lemma 1.

L (:&1)
n+1 (x)=Qn+1(x)+(1++)(n+1)

k (:)
n

k� n

Qn(x), n�0. (12)

Proof. Expanding L(:&1)
n+1 (x) in the basis [Qj]n+1

j=0 of Pn+1 , where Pn+1

is the linear space of polynomials with degree at most n+1, we get

L (:&1)
n+1 (x)=Qn+1(x)+ :

n

i=0

a (n+1)
i Qi (x),

where

a (n+1)
i =

(L (:&1)
n+1 , Qi)S

k� i

=
(L (:)

n+1+(n+1) L (:)
n , Qi)S

k� i

.
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Therefore, using Theorem 1(a), we obtain

a (n+1)
i =0, i=0, ..., n&1,

a (n+1)
n =(1++)(n+1)

k (:)
n

k� n

. K

Proof of Proposition 1. By definition of k� n ,

k� n=(Qn , Qn)S=(Qn , L (:&1)
n )S

=(Qn , L (:&1)
n )+* (Q$n , (L (:&1)

n )$)

++[(Q$n , L (:&1)
n )+(Qn , (L (:&1)

n )$)].

Then, using Theorem 1(a), we get

k� n=k (:)
n +(*++) n2k (:)

n&1+(1++) n (Qn , L (:)
n&1) . (13)

On the other hand, using Lemma 1 and again Theorem 1(a), we get

(Qn , L (:)
n&1)=�L (:&1)

n &(1++) n
k (:)

n&1

k� n&1

Qn&1 , L (:)
n&1�

=nk (:)
n&1&(1++) n

(k (:)
n&1)2

k� n&1

(14)

Substituting (14) in (13), (6) follows. K

Relation (12) and the recurrence relation for k� n=(Qn , Qn)S that we have
just proved are very useful tools to compute the polynomials Qn(x). We
can express Qn+1(x) as a linear combination of L (:&1)

n+1 (x) and Qn(x) in the
following way:

Qn+1(x)=L (:&1)
n+1 (x)&(1++)(n+1)

k (:)
n

k� n

Qn(x). (15)

Since Q0(x)=L (:&1)
0 (x)=1, k0=k� 0=1(:+1) and using (6) to compute

k� n , then it is easy to observe that the computation of Qn(x), using (15) in
a recursive way, only needs Laguerre polynomials, the square of their
norms k (:)

n and the parameters * and +. We summarize this in the following
result:

Corollary 5. For n�0,

(a) Qn(x)= :
n

j=0

(&1) j b (n)
j L (:&1)

n& j (x),
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where

b (n)
0 =1,

(16)
b (n)

j =(1++) j `
j

i=1

(n&i+1)
k (:)

n&i

k� n&i

, j=1, ..., n.

(b) Qn(x)= :
n

j=0

c (n)
j xn& j,

where

c (n)
0 =1

c (n)
j =

(&1) j

(n& j)!
:

j

i=0
\n&i+:&1

j&i + (n&i)! b (n)
i , j=1, ..., n,

where b (n)
i is given by (16).

Proof. (a) It is straightforward applying (15) in a recursive way.

(b) Follows by substituting in (a) the explicit representation of
L(:&1)

n& j given by (5). K

Proof of Proposition 2. If we divide (6) by k (:)
n and use their explicit

values, we get

k� n

k (:)
n

=1+(1+*+2+)
n

n+:
&(1++)2 n

n+:
k (:)

n&1

k� n&1

. (17)

We can define sn+1=(k� n �k(:)
n ) sn with the initial condition s0=1. Therefore,

(17) can be rewritten as

sn+1&\1+(1+*+2+)
n

n+:+ sn+(1++)2 n
n+:

sn&1=0,

where s0=1 and s1=k� 1 �k (:)
1 . Since

lim
n � � \1+(1+*+2+)

n
n+:+=2(1++)+*,

lim
n � �

(1++)2 n
n+:

=(1++)2,

and (2(1++)2+*)2&4(1++)2=*2+4*(1++)>0, the roots l1 , l2 of the
characteristic equation

t2&(2(1++)+*) t+(1++)2=0,

65ASYMPTOTICS OF SOBOLEV POLYNOMIALS



are real, simple and positive. More precisely,

l1=
*+2(1++)+- *2+4*(1++)

2
,

l2=
*+2(1++)&- *2+4*(1++)

2
.

Thus, by Poincare� 's Theorem k� n �k (:)
n =sn+1 �sn converges to one of these

roots. Since k� n�k (:)
n , we need to choose l1

lim
n � �

k� n

k (:)
n

=l1>1.

Therefore,

l := lim
n � �

k (:)
n

k� n

=
1
l1

=
*+2(1++)&- *2+4*(1++)

2(1++)2 <1. K

We are now ready to prove the relative asymptotics Qn �L (:&1)
n as n � �.

Proof of Theorem 2. Denote Yn(x)=Qn(x)�L (:&1)
n (x). From Lemma 1

we have

1=Yn+1(x)+(1++)
k (:)

n

k� n

(n+1)
L(:&1)

n (x)
L(:&1)

n+1 (x)
Yn(x). (18)

On the other hand, some simple computations yield

|l(1++)|<1. (19)

Using Theorem 1(c) and Proposition 2 we obtain

lim
n � � } (1++)

k (:)
n

k� n

(n+1)
L (:&1)

n (x)
L (:&1)

n+1 (x) }=|l(1++)|<1,

locally uniformly on C"[0, �).
Thus, for a fixed compact set K/C"[0, �) there exist constants s with

0<s<1 and n0 # N such that when x # K and n�n0 ,

} (1++)
k (:)

n

k� n

(n+1)
L (:&1)

n (x)
L(:&1)

n+1 (x) }�s.
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Therefore,

|Yn+1(x)|�1+s |Yn(x)|, n�n0 , x # K.

Hence, [Yn] is uniformly bounded on compact subsets of C"[0, �). We
have

Yn+1(x)=1+l(1++) Yn(x)&l(1++) Yn(x)&(1++)
k (:)

n

k� n

(n+1)

_
L (:&1)

n (x)
L (:&1)

n+1 (x)
Yn(x). (20)

Denote

$n(x) := &\l(1++)+(1++)
k (:)

n

k� n

(n+1)
L (:&1)

n (x)
L (:&1)

n+1 (x)+ Yn(x),

then

lim
n � �

$n(x)=0, (21)

locally uniformly on C"[0, �).
Let us define gn(x)=Yn(x)&1�(1&l(1++)). Then, (20) can be rewritten

as

gn+1(x)=l(1++) gn(x)+$n(x)

and from (19) and (21) the fact that gn(x) � 0 is straightforward. K

Corollary 1 is an immediate consequence of Perron's formula and
Theorem 2.

Proof of Corollary 2. For :>0 it is a trivial consequence of Perron's
formula, Theorem 2 and the fact that L (:&1)

n has all its zeros in [0, �). For
:=0, the zeros of L (&1)

n are those of L (1)
n&1 (see [13, p. 102]) and 0 with

multiplicity one. Then, again, the result is valid. When &1<:<0, L (:&1)
n

has n&1 positive zeros and a negative zero (see [13, p. 151]). Again, using
Perron's formula the negative zero goes to 0 when n � �, and therefore
the result holds in this situation. K
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Proof of Theorem 3. From Feje� r's formula for Laguerre polynomials
(see [13, Theor. 8.22.1, p. 198]) we have

L (:&1)
n (x)

n! n:�2&3�4=(&1)n ?&1�2ex�2x&:�2+1�4 cos \2 - nx&(:&1)
?
2

&
?
4+

+O(n&1�2). (22)

Now, if we use the asymptotic formula (see [13, (1.71.7), p. 15]),

J:(z)=\ 2
?z+

1�2

cos \z&:
?
2

&
?
4++O(z&3�2), z � �,

with z=2 - nx, n � �, then we get

(&1)n L (:&1)
n (x)

n ! n:�2&1�2 =ex�2x&:�2+1�2J:&1(2 - nx)+O(n&3�4). (23)

We denote an=&(1++)(n+1) k (:)
n �k� n and using (15) we have

Qn+1(x)
(n+1)! (n+1):�2&1�2

=
L (:&1)

n+1 (x)
(n+1)! (n+1):�2&1�2+

1
n1�4

an

n+1 \
n

n+1+
:�2&1�2 Qn(x)

n ! n:�2&3�4

=
L (:&1)

n+1 (x)
(n+1)! (n+1):�2&1�2+

1
n1�4

an

n+1 \
n

n+1+
:�2&1�2

_\L (:&1)
n (x)

n ! n:�2&3�4+
an&1

n \n&1
n +

:�2&3�4 Qn&1(x)
(n&1)! (n&1):�2&3�4+ . (24)

If we define Rn(x) :=Qn(x)�(n ! n:�2&3�4), (24) can be rewritten as

Qn+1(x)
(n+1)! (n+1):�2&1�2=

L (:&1)
n+1 (x)

(n+1)! (n+1):�2&1�2+
1

n1�4

_
an

n+1 \
n

n+1+
:�2&1�2

Rn(x), (25)

where

Rn(x)=
L (:&1)

n (x)
n ! n:�2&3�4+

an&1

n \n&1
n +

:�2&3�4

Rn&1(x).
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On the other hand, for n large enough and x on compact subsets of (0, �)
by using (22) L (:&1)

n (x)�(n ! n:�2&3�4) is uniformly bounded and by Proposi-
tion 2

lim
n � �

an&1

n
=&(1++) l with |(1++) l |<1.

Thus, we can conclude that Rn(x) is uniformly bounded on compact
subsets of (0, �). Therefore, from (25) we get

Qn+1(x)
(n+1)! (n+1):�2&1�2=

L (:&1)
n+1 (x)

(n+1)! (n+1):�2&1�2+O(n&1�4), n � �,

and by using (23) we obtain the result. K

Proof of Proposition 3. The inequality on the right hand side is a
straightforward consequence of Proposition 1. On the other hand, from the
extremal property of k (:)

n , i.e.,

k(:)
n =inf[( p, p) : p(x)=xn+terms of lower degree],

we get

k� n=(Qn , Qn)S=(Qn++Q$n , Qn++Q$n)+(*&+2) (Q$n , Q$n)

�k (:)
n +(*&+2) n2k (:)

n&1 . K

Proof of Theorem 4. Denote by l (:)
n the n th orthonormal Laguerre

polynomial. From Theorem 1(d) and (e) we have

xl(:)
n (x)=an+1 l (:)

n+1(x)+bn l (:)
n (x)+an l (:)

n&1(x), n�1,

where an=- n(n+:) and bn=2n+:+1.
Since, for j # R fixed,

lim
n � �

an

n+ j
=1, lim

n � �

bn

n+ j
=2,

we will use the following result due to W. Van Assche (see [14, p. 117] or
[15, p. 435]),

lim
n � �

l (:)
n&1((n+ j) x)
l (:)

n ((n+ j) x)
=

1

. \x&2
2 +

, j # R fixed
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uniformly on compact subsets of C"[0, 4]. Then

lim
n � �

n
L(:&1)

n&1 ((n+ j) x)
L (:&1)

n ((n+ j) x)
=

1

. \x&2
2 +

, j # R fixed (26)

uniformly on compact subsets of C"[0, 4].
Now, if we make the change of variable x � nx in (a) of Corollary 5 and

dividing by L (:&1)
n (nx), we get

Qn(nx)
L (:&1)

n (nx)
= :

n

j=0

(&1) j b (n)
j

L (:&1)
n& j (nx)

L(:&1)
n (nx)

. (27)

First, we analyze the asymptotic behaviour of the coefficient b (n)
j , for j

fixed and n � �. It is easy to observe from (16) that

lim
n � �

b (n)
j

n(n&1) } } } (n& j+1)
=(1++) j lim

n � �
`

j

i=1

k (:)
n&i

k� n&i

=((1++) l ) j, (28)

and, using (26), we get for j fixed,

lim
n � �

`
j

i=1

(n&i+1)
L(:&1)

n& j (nx)

L (:&1)
n (nx)

=. \x&2
2 +

& j

, (29)

uniformly on compact subsets of C"[0, 4]. Notice that |.((x&2)�2)|>1
when x # C"[0, 4], hence |.((x&2)�2)|& j�1. Actually, if j�1 the above
inequality is strictly less than one and, if j is large, then it is <<1.

We denote

gn, j (nx)={(&1) j b (n)
n& j

L (:&1)
n& j (nx)

L (:&1)
n (nx)

,

0,

0� j�n,

j>n,

then, from (28) and (29), for j fixed we have

lim
n � �

gn, j (nx)=\
&(1++) l

. \x&2
2 ++

j

:= gj (x), (30)
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uniformly on compact subsets of C"[0, 4], and since |(1++) l |<1 we get

gj (x)= }
l(1++)

. \x&2
2 + }

j

<1.

Moreover, if x belongs to a compact subset of C"[0, 4], using (7), (29)
and the fact that + # (&1, 0] (this guarantees that (1++) k (:)

n �k� n�C, for
all n # N), we have for n large enough and 0� j�n,

| gn, j (nx)|�MC j, (31)

where M is a constant and C is the constant given by (8).
We have

Qn(nx)
L (:&1)

n (nx)
= :

n

j=0

gn, j (nx). (32)

Then, by (31), we have a dominant for (32) and so the validity of the inter-
change of limit and summation is guaranteed by Lebesgue's dominated
convergence theorem. Therefore, using (30), we get

lim
n � �

Qn(nx)
L (:&1)

n (nx)
= :

�

j=0

gj (x)=
. \x&2

2 +
. \x&2

2 ++(1++) l
.

Here, we can give information about the asymptotic behavior of
[Qn(nx)�L (:)

n (nx)]. Using Theorem 1(a) and Lemma 1 we can write

L (:)
n (nx)+nL (:)

n&1(nx)=Qn(nx)+(1++) n
k (:)

n&1

k� n&1

Qn&1(nx),

then, if we divide by L (:)
n (nx) it is possible, with minor changes, to proceed

as above in order to prove (10). K

Proof of Corollary 3. This is a straightforward consequence of Theorem 4
and the fact that the contracted zeros of Laguerre polynomials cluster on
the interval [0, 4] (see [14] or [15]) and their asymptotic distribution has
density (2?)&1

- 4&x�- x (see, for example, [14, p. 123]). K

Proof of Corollary 4. Since the sequence [cn=n, n=1, 2, ...] is a regularly
varying sequence with index one (see [14, p. 120] or [15, p. 435]), we use
a result due to J. S. Geronimo and W. Van Assche [3, for (4.2)] about the
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Plancherel�Rotach asymptotics for Laguerre polynomials, that is, for
monic Laguerre polynomials we get,

lim
n � �

2n
- 2?n L (:)

n (nx)

n ! (x&2+- x2&4x)n exp \ 2nx

x+- x2&4x+
=2&:&1�2x&:(x&2+- x2&4x)1�2 (x+- x2&4x): (- x2&4x)&1�2,

(33)

taking into account that the square roots in the above formula are negative
if x is negative. Therefore, by using (33) and Theorem 4, we obtain the
Plancherel�Rotach asymptotics for Sobolev polynomials Qn(nx). K

Proof of Theorem 5. We can find a Mehler�Heine type formula for
Laguerre polynomials in (13, p. 193]. If : # R, then

lim
n � �

(&1)n L (:)
n (x�n)

n:n !
=x&:�2J:(2 - x), (34)

uniformly on compact subsets of C. Indeed, the proof of (34) is also valid
in the following situation: for a fixed j # R

lim
n � �

(&1)n L (:)
n (x�(n+ j))

(n+ j): n!
=x&:�2J:(2 - x), (35)

uniformly on compact subsets of C.
Since,

(&1)n Qn(x�n)
n:&1n !

= :
n

j=0

b (n)
j

> j&1
i=0 (n&i)

(&1)n& j L (:&1)
n& j (x�n)

n:&1(n& j )!
, (36)

with the assumption b (n)
0 =1 and the convention that >&1

i=0(n&i)=1.
Therefore, if we take x on a compact subset of C, then using (7), (35)

and also the fact that + # (&1, 0], we again have a dominant for (36) and
we can proceed as in Theorem 4 to prove (11). K

Proof of Proposition 4. This is a straightforward consequence of
Theorem 5. K
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